30 de dezembro de 2012
Novos Títulos Sobre Lógica Formal em 2013.
Em 2013, estarei publicando três novos livros de minha autoria nos quais trato formalmente questões relacionadas à Teoria da Argumentação, Teoria da Prova e Análise Inferencial no campo da Lógica Formal Dedutiva, quais sejam:
(01) SILOGÍSTICA: INTRODUÇÃO À LÓGICA CATEGÓRICA (Terceira Edição),
ISBN 978-85-88925-16-8;
(02) PROBLEMAS E EXERCÍCIOS DE LÓGICA MATEMÁTICA (Segunda Edição),
ISBN 978-85-88925-17-5; e,
(03) CÁLCULO LÓGICO INFERENCIAL,
ISBN 978-85-88925-18-2.
Carlos Magno Corrêa Dias
Curitiba-PR, 30/12/2012
28 de dezembro de 2012
Depuração Lógica Promovendo Ampliação de Horizontes para o Bem Pensar.
SECAFUNP 3, SCADIENG 3 e SELOGMAS 3 serão ofertados em 2013, em novos “Mundos Possíveis”, em datas a serem divulgadas na sequência, para os públicos selecionados de costume e com semelhante intensidade lógica para quebrar dogmas e romper paradigmas que embotam a mente e aprisionam o entendimento nas celas do usual. Aguardem.
Carlos Magno Corrêa Dias
Curitiba-PR, 28/12/2012
27 de dezembro de 2012
Necessário Entendimento Associativo.
Mesmo aqueles desprovidos de grande inteligência conseguem entender ser necessário manter o respeito entre os pares.
Carlos Magno Corrêa Dias
Curitiba-PR, 27/12/2012
21 de dezembro de 2012
Lógica Analítica Inferencial.
Partindo-se do desenvolvimento histórico da Lógica esta poderia, em sentido estrito, ser caracterizada (ou antes, subdividida), de forma geral, em Lógica Não-Formal e Lógica Formal; muito embora, ressalte-se, uma tal classificação seja adotada no presente contexto de forma arbitrária.
Contudo, enquanto Lógica Não-Formal esta não adota a axiomatização e, nem tão pouco, regras de um cálculo no seu tratamento. Por assim dizer, é a Lógica Não-Formal mais “intuitiva”; porquanto, não sendo tratada por meio de métodos analíticos, não é passível de ser formalizada através de uma linguagem simbólica, sendo, em essência, um desenvolvimento puramente filosófico dissociado do formalismo e da algebrização.
Saliente-se, a propósito, que as considerações pretendidas não dizem respeito à análise e/ou investigação desta forma da Lógica, uma vez que o objeto principal de estudo corresponde à Lógica Formal e, em particular, à Lógica Matemática.
Enquanto Lógica Formal (a qual encerra em seu universo conceitual a Lógica Matemática), esta, em contrapartida, está fundamentada na axiomatização, no formalismo e na simbolização. Desta forma, em sua dimensão particularizada, a Lógica Matemática (ou Simbólica, ou Algorítmica, como se prefira qualificá-la), sendo uma Lógica axiomatizada (bivalente e dicotômica), é individualizada por processos analíticos conexos através de métodos matemáticos.
A Lógica Matemática se desenvolve na instância das relações abstratas dos símbolos e se detém à combinação destes mesmos símbolos entre si (remetidos a uma linguagem artificial com semântica e sintaxe próprias) quando, então, passa a estudar as inferências (via argumentação) do ponto de vista da validade da estrutura sentencial, subtraindo o significado concreto de sua determinação para atingir a coerência de raciocínio.
Abstraindo o significado relativo dos elementos constituintes de um determinado sistema (universo relacional) passa, a Lógica Matemática, a estabelecer normas, princípios e/ou regras que possibilitem a construção coerente do pensamento em termos de juízos necessários; servindo-se, para tanto, das estruturas em sua constituição formal. É, pois, a Lógica Matemática um sistema científico de raciocínio onde a axiomatização, o formalismo e a simbolização são suas características fundamentais.
Por outro prisma, à Lógica Matemática cabe, entre outras funções, consolidar os meios pelos quais as inferências válidas possam ser analisadas a partir da formalização e do relacionamento intrínseco entre os entes de um dado sistema, consignando o raciocínio em termos de operações e relações lógicas. Porquanto, desdobra-se, a Lógica Matemática, na especificação de uma linguagem proposicional e na determinação de princípios que norteiam a fundamentação e o desenvolvimento de um sistema formal de raciocínio.
Usualmente (na Academia, pelo menos), para uma melhor compreensão (ou estudo) da Lógica Matemática, costuma-se apresentá-la em duas partes específicas (que mutuamente se relacionam), ou, mais precisamente, segundo dois cálculos efetivos, os quais são enunciados, respectivamente, por: Cálculo Sentencial (ou Cálculo Proposicional, ou Cálculo dos Enunciados) e Cálculo dos Predicados (ou Cálculo Predicativo, ou Cálculo das Funções Proposicionais).
O Cálculo Proposicional encerra um aparato conceitual capaz de determinar, ou antes, de verificar, as relações lógicas válidas (legítimas) entre classes de fórmulas a partir de unidades mínimas de análise; bem como, possibilita o estabelecimento de procedimentos de decisão que permitem contextualizar a “verdade” ou a “falsidade” das estruturas analíticas compostas a partir de seus elementos componentes e segundo as definições que lhe deram origem.
Quanto às inferências, o Cálculo Sentencial dispõe de meios “algébricos” (bem estruturados) para formular critérios de análise quanto à legitimidade de um dado argumento dedutivo a partir do relacionamento (conexão estrutural) das premissas (princípios ou teses anteriormente estabelecidas) com a conclusão (enunciado inferido a partir de seus antecedentes; as premissas).
Ao Cálculo dos Predicados, entretanto, cabe a avaliação da estrutura lógica interna dos enunciados envolvidos na inferência que, no Cálculo Proposicional, são considerados indivisíveis. Além do mais, o Cálculo dos Predicados permite verificar a legitimidade de argumentos cuja complexidade não é passível de ser analisada segundo os princípios norteadores do Cálculo Proposicional; dado que, saliente-se, não se trabalham com classes de elementos no Cálculo Sentencial e sim com os elementos, sendo, pois, as classes de elementos a matéria prima de análise no Cálculo dos Predicados.
A esta altura do presente texto, talvez, o leitor estará se perguntando: O que é Lógica Matemática? A Lógica Matemática e a Matemática constituem sistemas (ou Ciências) mutuamente excludentes? Pode-se, efetivamente, renegar um tratamento lógico da atividade matemática? Pode-se, a bem da verdade, desenvolver o trabalho matemático dissociado dos pressupostos lógicos?
Para algumas das possíveis respostas, convida-se o leitor a ler a segunda parte deste texto a ser publicada, neste mesmo espaço, na sequência, em futuro próximo.
Carlos Magno Corrêa Dias
Curitiba-PR, 21/12/2012
20 de dezembro de 2012
Potencialidades Subvertidas Mascaram Abrangências.
Organizações que se vangloriam por manter seguidamente resultados menores conquistados a duras penas (frente àquelas outras que mesmo atingindo os resultados máximos possíveis ainda se obrigam melhorar seus padrões para ampliar seus alcances) constitui posicionamento bizarro (ou contrapositivo) mesmo no mundo surreal das aparências ou na esfera do faz de conta. Algumas realidades necessitam enxergar a si próprias para serem percebidas por elas mesmas.
Carlos Magno Corrêa Dias
Curitiba-PR, 20/12/2012
16 de dezembro de 2012
Liberdade Promovendo Conquista Social e Individual.
Selvagem, familiar, hodierno, conflitante, afetivo, cruel, magnífico, surreal, presente, civilizado, tradicional, de vanguarda, mediador, essencial, fortuito, novo e quase revolucionário. Assim é “Valente”, da PIXAR/DISNEY, que traz como protagonista a surpreendente Merida.
A animação é entusiástica e gira em torno dos conflitos que possam ser gerados entre o senso de liberdade dos jovens e as tradições dos pais. Fortemente emocional, mas, também, crítico e divertido, o enredo põe em confronto o espírito selvagem da jovem Merida e a etiqueta social como obrigação asseverada por sua mãe. Assim, o embate entre a liberdade e a tradição está no centro do roteiro e se mostra repleto de significados que objetivam evitar a destruição da noção de família, tendo por mediadora a própria Mérida (o que constitui outra inovação).
Na trama, muito bem conduzida, a jovem princesa dá, entretanto, provas que a diplomacia como forma de valor moral pode ser introduzida nos contos infantis para mostrar que a família (embora essencial) tem forma heterogênea e é conflituosa mas que pode ser “vivida” em conjunto para o bem de todos os envolvidos desde que preservando-se o respeito, garantido-se a amizade e o amor e, sobretudo, reconhecendo e entendendo as individualidades.
Movimentado, curioso, e, também, divertido, “Valente” é de prender a atenção do começo ao fim. Mas, o mais interessante (o moderno, aquilo que garante vanguarda) na animação é o avanço que os produtores se permitiram aceitar ao criar um roteiro infantil que provoca, incentiva, faz refletir e, ao mesmo tempo, ensina (a quem estiver disposto a aprender ou a apreender, independente da idade) que a liberdade pode ser direcionada para a conquista social e individual.
Carlos Magno Corrêa Dias
Curitiba-PR, 16/12/2012
12 de dezembro de 2012
Constatação Hodierna Obriga Reposicionamento de Mercado.
Não há como falsificar esta verdade: “os Profissionais que dirigirão o país no futuro próximo são (em sua grande maioria) aqueles formados nos Cursos de Graduação e não nas Pós-Graduações”. Assim sendo, se faz necessário potenciar as Graduações para garantir uma maior expertise de nossos futuros profissionais.
Carlos Magno Corrêa Dias
Curitiba-PR, 12/12/2012
11 de dezembro de 2012
Aos Politécnicos o Sempre Engendrar.
No dia do Engenheiro, 11 de dezembro, dia quando foi regulamentada a profissão de Engenheiro no Brasil em 1933, faço relembrar o conhecido JURAMENTO: “Prometo que, no cumprimento do meu dever de Engenheiro não me deixarei cegar pelo brilho excessivo da tecnologia, de forma a não me esquecer de que trabalho para o bem do Homem e não da máquina. Respeitarei a natureza, evitando projetar ou construir equipamentos que destruam o equilíbrio ecológico ou poluam, além de colocar todo o meu conhecimento científico a serviço do conforto e desenvolvimento da humanidade. Assim sendo, estarei em paz Comigo e com Deus.”
Que Minerva continue, também, a incentivar e a orientar os Politécnicos (os ENGENHEIROS) a sempre ENGENDRAR soluções para a melhoria de vida de nosso Povo e de nossa Nação.
Carlos Magno Corrêa Dias
Curitiba-PR, 11/12/2012
10 de dezembro de 2012
Congresso Fortalece a Consciência Cidadã.
Com oficinas, mostra de projetos, palestras e painéis tratando do tema “Estratégias para o Desenvolvimento Local e os Objetivos de Desenvolvimento do Milênio (ODM)” foi realizado em Curitiba, pelo Serviço Social da Indústria do Paraná (SESIPR), nos dias 5 e 6 de dezembro de 2012, na sede da Federação das Indústrias do Paraná (FIEP), o “V Congresso Nós Podemos Paraná”.
Nesta nova edição do evento além de passarmos a conhecer Boas Práticas que estão contribuindo de forma determinante para o Desenvolvimento dos Municípios do Estado do Paraná tivemos a oportunidade de definir importantes parcerias com distintos atores da Sociedade Paranaense no sentido de contribuirmos com ações orientadas para atingirmos os ODM.
Como tenho observado em todos os “Congressos Nós Podemos Paraná” que já participei, o mais importante destes eventos é, sem dúvida, a potência que os mesmos disseminam para o fortalecimento da “Consciência Cidadã”.
Parabéns aos idealizadores e realizadores destes importantes e necessários eventos. “Eu posso, Você pode, o Paraná pode, Nós podemos Mudar o Mundo”.
Carlos Magno Corrêa Dias
Curitiba-Pr, 10/12/2012
7 de dezembro de 2012
Modernismo Brasileiro Chamado em Retrospectiva Lírica.
No último dia 6 de dezembro, tivemos, no Museu Oscar Niemeyer (MON), a abertura da exposição “Di Cavalcanti, Brasil e Modernismo”, exposição esta que integrou as comemorações de aniversário de uma década de existência daquele fantástico espaço.
A mostra é composta de cerca de oitenta obras do pintor, desenhista, ilustrador, caricaturista e modernista brasileiro Emiliano Augusto Cavalcanti de Albuquerque e Melo (1897-1976), conhecido como Di Cavalcanti.
Como uma retrospectiva, são expostos desenhos, aquarelas e pinturas que evidenciam a vertente lírica do artista carioca considerado um dos importantes representantes do Movimento Modernista no Brasil.
Artista marcado pela influência do expressionismo, cubismo e dos muralistas mexicanos, Di Cavalcanti é, também, sem muita controvérsia, um dos expoentes das artes plásticas brasileira, tendo sido o idealizador e um dos organizadores da Semana de Arte Moderna, realizada em 1922, no Teatro Municipal de São Paulo.
Carlos Magno Corrêa Dias
Curitiba-PR, 07/12/2012
6 de dezembro de 2012
LIBERDADE.
Não possuo a adaga nefasta da morte,
Que dos mártires a existência assalta.
Não sou o cárcere da justiça malta
Onde o lícito falta e a súcia é forte.
Alvitro-vos, apenas, por minha qualidade lauta:
A consciência moldada com o cinzel da verdade.
Mas, dizeis o termo: LIBERDADE
Que assim tão bem me retrata,
E vereis o quão vos serão gratas
As grades de uma prisão.
Carlos Magno Corrêa Dias
Curitiba-PR, 06/12/2012
Originalmente publicado em:
* DIAS, Carlos Magno Corrêa. Antinomias ou Realidades? 1a. ed. Curitiba: C. M. C. Dias, 2002. ISBN: 85-900661-7-7.
* DIAS, Carlos Magno Corrêa. Contingências. 1a. ed. Curitiba: C. M. C. Dias, 2005. ISBN: 85-88925-09-5.
5 de dezembro de 2012
São Capítulos da História os Imortais.
Algumas personalidades nunca morrem, pois viram Capítulos da História. Hoje, 05 de dezembro de 2012, a História ganhou o Capítulo “Oscar Ribeiro de Almeida de Niemeyer Soares” (1907-2012).
Carlos Magno Corrêa Dias
Curitiba-PR, 05/12/2012
1 de dezembro de 2012
Ciclo Arquétipo Mântico.
Mesmo o mais “sábio” dos “oráculos” não é capaz de revelar arcanos que a consciência preserva absolutamente. Contudo, “no bico do corvo”, “nas unhas do abutre”, alguns enigmas sorriem de forma insólita e não contingente revelando, no caminho mântico, partes de diligente essência.
Carlos Magno Corrêa Dias
Curitiba-PR, 01/12/2012
17 de novembro de 2012
Dilema Sofístico de Natural Indignação.
A tolerância docente não encontra qualquer razão para omissões na Academia frente às exigências científicas, culturais e tecnológicas que clamam por desenvolvimento e inovação contínuos na presente era da informação.
Carlos Magno Corrêa Dias
Curitiba-PR, 17/11/2012
4 de novembro de 2012
Profissão Inventor: Predicado Daqueles que Transformam o Mundo.
Fruto do trabalho dirigido para se desenvolver a solução de um problema particular identificado, a invenção constitui o ato de criar novas tecnologias, processos, produtos e serviços ou, também, a ação de aperfeiçoar algo existente caso em que fazemos referência à “reinvenção”.
Mas, aqueles que produzem invenções ou reinvenções são os INVENTORES.
No Dia do INVENTOR, 4 de novembro, ressalte-se a importância do trabalho destes Homens Geniais que com suas invenções e reinvenções transformam a realidade em nosso entorno. Que sejam sempre reconhecidos e valorizados.
Carlos Magno Corrêa Dias
Curitiba-PR, 04/11/2012
1 de novembro de 2012
Responsabilidade Social Corporativa é Incentivada no Congresso Alianças Sociais.
Nos dias 30 e 31 de outubro de 2012, foi realizado, em Curitiba, o Primeiro Congresso CPCE Alianças Sociais, promovido pelo Conselho Paranaense de Cidadania Empresarial (CPCE), pertencente à Federação das Indústrias do Paraná (FIEP).
O evento reuniu diversas empresas, instituições sociais e governo que discutiram, avaliaram e pensaram ações no sentido de incentivar ações na área de Responsabilidade Social Corporativa. Foi, também, objetivo do evento priorizar a Sustentabilidade e a Formação de Alianças entre governo, empresas e organizações não governamentais.
Durante o evento foi realizada a assinatura simbólica do Pacto Global por diversas empresas e instituições, quando considerou-se, também, que o caminho mais seguro para a realização de ações na área de Responsabilidade Social é ser signatário do Pacto Global. Contudo, enfatizou-se, ainda, que as PARCERIAS são fundamentais para o sucesso dos Projetos Sociais.
O evento teve seu encerramento com o lançamento do Projeto Diálogo de Parcerias Sustentáveis o qual tem por objetivo promover a Responsabilidade Social Corporativa nas relações comerciais.
Carlos Magno Corrêa Dias
Curitiba-PR, 01/11/2012
27 de outubro de 2012
Convergências entre SNLB e ODM 2
Com início no último dia 23 de outubro e término em 29 de outubro está acontecendo em nosso país a Semana Nacional do Livro e da Biblioteca, semana esta instituída pelo Decreto número 84631, de 09/04/1980.
A Semana Nacional do Livro e da Biblioteca foi pensada para incentivar a leitura, difundir o livro, estimular a construção do conhecimento e divulgar a Biblioteca como importante centro de democratização do saber.
A despeito da evolução tecnológica e do desenvolvimento que possamos atingir, o LIVRO, em sentido estrito (não importa a forma ou o suporte onde seja engendrado) continuará sendo a fonte universal do saber humano.
Nos pautando, então, na importância do LIVRO para a formação de todos nós pensemos como engendrar, durante a SNLB 2012, novas soluções para atingirmos o objetivo 2 dos ODM (Educação Básica Para Todos) utilizando a força e o alcance do livro.
Carlos Magno Corrêa Dias
Curitiba-Pr, 27/10/2012
26 de outubro de 2012
Ciência, Tecnologia e Inovação Abundam na SNCT 2012.
O mundo é constantemente transformado mediante as alterações causadas pelas intervenções do homem. Mas as interferências do homem no mundo real são balizadas pelas Ciências e pelas Tecnologias. Embora seja notória a afirmação em pauta, em alguns mundos possíveis, por mais estranho que possa parecer, ainda existem sérias dificuldades no reconhecimento da necessidade aventada.
Viver a era da informação não permite, entretanto, que o entendimento possa penetrar onde não pode ser aceito ou, antes, compreendido devidamente.
No Brasil, contudo, e felizmente, como um todo, estamos cada vez mais alinhados com a Ciência e a Tecnologia. Exemplos significativos desta realidade foram mostrados na semana de 15 a 21 de outubro de 2012, quando realizamos a Semana Nacional de Ciência e Tecnologia – SNCT 2012 a qual objetivou, como nas edições anteriores, promover e estimular fortemente atividades de difusão e de apropriação social de conhecimentos científicos e tecnológicos.
Promovida e coordenada pelo Ministério da Ciência, Tecnologia e Inovação (MCTI), a Semana Nacional de Ciência e Tecnologia 2012, partindo de sugestões recebidas de consultas realizadas a diversas Organizações da Sociedade, adotou como tema a “Economia Verde, Sustentabilidade e Erradicação da Pobreza”, assuntos tratados, também, recentemente na importante Conferência Rio +20.
Diversas estratégias foram debatidas ao longo da SNCT 2012 para garantir a mudança necessária de paradigmas para enfrentar os (não poucos) desafios da Sustentabilidade nas suas dimensões ambiental, econômica e social no país. Particularmente (e muito intensamente) foram analisadas e apresentadas proposições significativas sobre como a Ciência e a Tecnologia poderão contribuir de forma efetiva, eficaz e eficiente, na Erradicação da Pobreza, possibilitando, em decorrência, diminuir as enormes desigualdades sociais em nossa Nação.
A nona edição da Semana Nacional de Ciência e Tecnologia (SNCT 2012) fez história e superou, em muito, as expectativas iniciais. Na edição de 2012 houve um aumento de mais de quarenta por cento no número de atividades cadastradas se comparado com a edição de 2011 e o número de Instituições oficialmente envolvidas saltou para oitocentas e sessenta e sete.
A SNCT vem mostrando desde 2004, quando foi realizada a primeira edição da semana, que o brasileiro tem forte vocação para o fazer Ciência e para o Inovar em Tecnologia. Em 2012, foram mais de vinte e três mil eventos celebrando a Ciência e a Tecnologia nas mais distintas localidades de nosso território nacional. Parabéns a todo aquele que se permite pensar, fazer e inovar em Ciência e Tecnologia.
Valorizar a criatividade, incentivar a atitude científica e tecnológica, mostrar para as pessoas a importância da Ciência e da Tecnologia para a melhoria de vida de cada um e para o desenvolvimento da nação sempre foi o objetivo da SNTC. Contudo, outra função importantíssima da SNCT é permitir à população brasileira não apenas se inteirar sobre os avanços tecnológicos e científicos mas, principalmente, ter a possibilidade de discutir abertamente os correspondentes resultados e as consequências sobre o atual estado de desenvolvimento da Ciência e da Tecnologia no país para reivindicar soluções mais próximas e necessárias.
A participação nas Semanas Nacionais de Ciência e Tecnologia no Brasil é aberta a qualquer pessoa interessada, sendo este um ponto de distinção na ideologia dos promotores que são os diversos atores envolvidos com a Ciência e a Tecnologia tais como: Secretarias Municipais e Estaduais de Ciência e Tecnologia, Secretarias Municipais e Estaduais de Educação, Escolas Públicas e Privadas, Universidades, Órgão Governamentais, Centro de Pesquisa e Desenvolvimento, Parques Tecnológicos, Agências de Inovação, Museus de Ciência e Tecnologia, Centros de Ciência e Tecnologia, Fundações de Apoio à Pesquisa, Centros de Inovação, Empresas Públicas e Privadas, Meios de Comunicação, Institutos de P&D&I, Federações das Indústrias, Federações do Comércio, ONGs, dentre diversas outras Entidades da Sociedade Civil.
Cabe ressaltar, ainda, que o dia 16 de outubro passou a ser consagrado, no Brasil, como o Dia da Ciência e Tecnologia o qual foi instituído como mais uma forma de reconhecer e incentivar a Ciência e a Tecnologia em nosso país.
Colocar na agenda a SNCT já constitui procedimento normal em todo lugar onde se presa o desenvolvimento da Nação e a melhoria de vida das pessoas a partir da Ciência e da Tecnologia. Assim sendo, já foi dado o sinal para se iniciar o processo de preparação da futura SNCT. Vamos manter está história cada vez mais presente incentivando a participação e garantindo o comprometimento cada vez mais intenso em torno da Ciência, da Tecnologia e da Inovação. Que o entendimento aqui considerado possa ser comungado por todos.
Carlos Magno Corrêa Dias
Curitiba-PR, 26/10/2012
12 de outubro de 2012
Dever Não é Kryptonita Que Somente Alguns Heróis Conseguem Vencer.
Cumprir com a OBRIGAÇÃO não torna o trabalhador um HERÓI. Um Servidor Público não é EXTRAORDINÁRIO porque simplesmente cumpre os DEVERES que o Estado lhe atribuiu. Um legislador que faz cumprir a JUSTIÇA não é um SER SOBRENATURAL. Um homem que segue a LEI não é um SANTO MILAGROSO.
Se a Justiça se mantivesse CEGA, talvez não se reconhecessem super heróis nos tribunais ou vítimas das circunstâncias nos bancos dos réus. Quando a LEI e a JUSTIÇA não são praticadas em conjunto, com a desejada frequência, os iludidos surgem e se deixam aprisionar pelo “faz de conta” ou são libertados pela ficção.
Carlos Magno Corrêa Dias
Curtiba-Pr, 12/10/2012
10 de outubro de 2012
O Saber Sempre Habitará Outros Mundos Possíveis.
O conhecimento cabe em todos os mundos possíveis. Contudo, o SABER se permite evadir daqueles mundos possíveis onde não pode ser compreendido, ou antes, aceito. Infelizmente para a humanidade existem determinados mundos restritos (embora mais que possíveis) onde não é inteligível pensar o universo como um potente organismo pleno constituído de partes que convivem numa harmonia natural e que solicita continua revitalização e aprimoramento. Felizmente (para a mesma humanidade) existem, entretanto, outros mundos possíveis (sempre em contínuo desenvolvimento e evolução) onde é solicitado, mediante o pensar e o conjeturar, que tudo seja análogo à totalidade para avançar e transcender.
O SABER deve ser global e integrador. A disseminação do Saber deve constituir um propósito unificador. O SABER deve convergir e entrecruzar as possibilidades para a progresso de todos os mundos possíveis, pois se assim não for deixem-se extinguir os mundos que, embora possíveis, não têm similar compreensão.
Potencializemos os mundos possíveis que propagam a verdade transformada em SABER.
Carlos Magno Corrêa Dias
Curitiba-PR, 10/10/2012
4 de outubro de 2012
Mais um Possível Paradoxo Real: “Presunção de Não Culpabilidade ou Princípio do Estado de Inocência”.
Não nos esqueçamos que é previsto no artigo quinto, inciso LVII, da Constituição Federal Brasileira em vigência, que "ninguém será considerado culpado até o trânsito em julgado de sentença penal condenatória".
Consequentemente, predispõe esse princípio que “todo cidadão é inocente até quando sobrevier sentença penal condenatória transitada em julgado, ou seja, até decisão condenatória que não admita mais recurso”.
Trata-se de um “direito fundamental da pessoa humana” e, em conseqüência, ninguém pode ter restrito seus direitos sob o motivo de responder a inquéritos policiais ou processos criminais em andamento.
Mas, somos obrigados a perguntar: e a “Lei da Ficha Limpa”? O não cumprimento da mesma, não seria já condenatório? Por que a própria Lei da Ficha Limpa não barra aqueles que estão à margem das prescrições desta Lei?
Contudo, é necessário lembrar que “além das nuvens existe um sol a iluminar o horizonte mesmo para aqueles que não conseguem enxergar o zênite ou o nadir”.
Carlos Magno Corrêa Dias
Curitiba-PR, 04/10/2012
3 de outubro de 2012
CONTÍNUAS POSSIBILIDADES Assaltam Reflexões Continuadas.
Em Curitiba, no ano de 2011, foi publicada a obra literária intitulada CONTÍNUAS POSSIBILIDADES na qual os autores propõem, mediante o uso prosaico das palavras, manter o sempre confronto inevitável entre a efemeridade da criação e a conjunção irrestrita dos sentimentos.
Valorizando mais as imagens consideradas próximas do pensar que a forma própria do discurso, em CONTÍNUAS POSSIBILIDADES, é perspectivado, nas entrelinhas das estruturas engendradas em palavras, o questionamento no caminho que leva às relações precípuas entre as ideações particulares e os acontecimentos gerais que condicionam a normalidade do cotidiano usual que, embora insensato ou assustador, é determinante.
Partindo do pressuposto que à organização das palavras em estrofes cabe, também, transcendendo o mundo material, a possibilidade ilimitada de exteriorizar e potencializar sentimentos, recorre-se, incondicionalmente, à organização das palavras para propor a singular simbiose entre a imaginação do autor e a do leitor.
Não foi pretendido se deixar render a esta ou àquela forma literária. Foi intencionado o desenvolvimento de derivações distintas interessadas em promover o refletir entre o condicionante sensível, o remotamente plausível e o necessário questionável.
Segundo pontuam os autores, Carlos Magno Corrêa Dias, Juliana Cecíia Gipiela Corrêa Dias e Mariana Carolina Gipiela Corrêa Dias, as estrofes apresentadas na obra não pretendem proclamar dogmas, mas se obrigam resgatar entendimentos ou alvitrar fantasias.
O conteúdo considerado não ambiciona, por outro lado, causar sensações de apreensão, ruptura ou desilusão tais quais os ensaios líricos mais contundentes, apaixonados ou críticos. Não querem, também, promover polêmicas ou suscitar sujeições. Na concepção dos autores, a retórica utilizada haverá de provocar possibilidades na contínua busca pela reflexão.
Assim, a combinação entre o sentimento e a imagem estigmatizada quer, em torno da significação das palavras, chamar os ânimos a olhar com atenção o limite entre o discernimento e o seu oposto causal no cotidiano, que se desenvolve sem refletir diferenças e distinguir significados.
É intenção dos autores de CONTÍNUAS POSSIBILIDADES que, para além das palavras organizadas segundo a particular forma adotada, pois que sempre uma configuração material será exigida independentemente das interiorizações pensadas ou dos sentimentos externados, o conteúdo exposto na obra venha provocar a mente a transcender o senso do contingencial que aprisiona e limita.
Carlos Magno Corrêa Dias
Curitiba-PR, 03/10/2012
1 de outubro de 2012
Uma Sociedade com Dignidade para Todas as Idades.
Objetivando a valorização do Idoso, no Brasil, a Lei número 11433, de 28 de dezembro de 2006, instituiu o Dia Nacional do Idoso, a ser celebrado no dia primeiro de outubro de cada ano.
Em nosso país, a data foi escolhida em decorrência da Lei 10741, de 01/10/2003, que dispõe sobre o Estatuto do Idoso e dá outras providências. O Estatuto do Idoso foi sancionado para regular os direitos assegurados às pessoas com idade igual ou superior a 60 (sessenta) anos.
Há de se salientar, também, que a data de primeiro de outubro é comemorada mundialmente como o Dia Internacional do Idoso a qual foi definida pela Organização das Nações Unidas (ONU). Contudo, a data comemorativa está relacionada com a histórica Primeira Assembleia Mundial sobre o Envelhecimento realizada pela ONU, em Viena, em 1982, quando foram iniciadas as discussões mundiais sobre a necessidade de se estabelecer diretrizes e princípios urgentes para se enfrentar o grande desafio do envelhecimento populacional mundial.
Objetivando, também, o reconhecimento sobre o progressivo envelhecimento das populações em todo o mundo e a necessidade de se instituir, por parte dos governos, programas e estratégias específicas para atender as populações com mais de 60 anos, foi realizada em Madrid, em 2002, uma Segunda Assembleia Mundial das Nações Unidas sobre o Envelhecimento e na qual foi estabelecido o Plano de Ação Internacional sobre o Envelhecimento de Madrid.
O Plano de Ação Internacional sobre o Envelhecimento de Madrid objetiva pensar mudanças de atitudes, políticas e práticas em todos os níveis para satisfazer as enormes potencialidades do envelhecimento no século XXI. No parágrafo 19 daquele Plano de Ação, lê-se: “Uma sociedade para todas as idades possui metas para dar aos idosos a oportunidade de continuar contribuindo com a sociedade. Para trabalhar neste sentido é necessário remover tudo que representa exclusão e discriminação contra eles.”
Atualmente, na medida em que as populações vão ficando mais velhas em todas as partes do mundo, graças ao desenvolvimento e ao progresso, tem-se registrado um processo demográfico único e irreversível, pois é esperado que a proporção de pessoas com 60 anos ou mais de idade deva duplicar até 2050, projetando um total de mais de dois bilhões em 2050 (o triplo da população atual). Estima-se, também, que o número de pessoas com mais de 80 (oitenta) anos deva chegar aos quatrocentos milhões até 2050.
Assim, os marcos legais objetivam garantir, o mais brevemente possível, novas organizações e posturas com vistas a chamar nossa atenção para o envelhecimento da sociedade e promover a necessária reflexão sobre o nosso comportamento frente à velhice.
Como o número e a proporção de idosos tem crescido muito rapidamente é mais que necessário atentarmos para este fenômeno extraordinário que, inevitavelmente, trará consequências para todos, sejamos jovens ou idosos.
Os desafios se multiplicarão e as Ciências e as Tecnologia deverão estar preparadas para atender adequadamente as demandas que surgirão. Todos nós, entretanto, temos que garantir aos idosos uma boa saúde física e mental, a plena integração dos mesmos nas sociedades, além, é claro, de combater quaisquer abusos, violências, negligências ou maus tratos aos nossos idosos. Porém, o idoso não deve ser tratado como uma vítima e toda discriminação ou agressão cometida contra ele deve ser denunciada e punida.
Homenageemos as pessoas idosas no dia consagrado a elas, mas sejamos promotores de suas conquistas. Que sejamos capazes de gerar as condições para que os idosos possam realizar-se plenamente em seus direitos, envelhecer com segurança e dignidade, participando ativamente da vida econômica, política e social de nosso país.
Todos nós temos o direito (e o dever) de continuarmos a nos desenvolver, sejamos jovens ou idosos. Garantamos, então, este futuro.
Carlos Magno Corrêa Dias
Curitiba-PR, 01/10/2012
25 de setembro de 2012
Apenas uma questão de escolha: “Toute nation a le gouvernement qu'elle mérite”.
Sendo assim, nas próximas eleições façamos valer, de forma positiva, o correspondente aforismo do aristocrata, escritor e contra-revolucionário francês Joseph Marie de Maistre (1753-1821).
Que em nossa Nação, a partir do voto, a sentença
“Toute nation a le gouvernement qu'elle mérite”
("Cada povo tem o governo que merece")
seja comprovada por termos em nosso Brasil governantes que estejam comprometidos com o desenvolvimento da Nação e com a melhoria de vida dos Cidadãos.
Carlos Magno Corrêa Dias
Curitiba-PR, 25/09/2012
Que em nossa Nação, a partir do voto, a sentença
“Toute nation a le gouvernement qu'elle mérite”
("Cada povo tem o governo que merece")
seja comprovada por termos em nosso Brasil governantes que estejam comprometidos com o desenvolvimento da Nação e com a melhoria de vida dos Cidadãos.
Carlos Magno Corrêa Dias
Curitiba-PR, 25/09/2012
15 de setembro de 2012
PARADIGMAS DA NECESSIDADE Impõe Nova Filosofia.
Conforme observado no prefácio de PARADIGMAS DA NECESSIDADE, o livro assim intitulado é destas obras (talvez) estranhas que embora não pretendam disseminar conjunto de dogmas reunidos em uma determinada filosofia é apenas uma filosofia declaratória de alguém que se obriga filosofar.
Mas o livro não anseia traçar possíveis limites para o pensar. Pelo contrário, sugere avançar as fronteiras de pensamentos induzidos para sujeitar a interiorização de preceitos necessários deduzidos dos valores da reflexão.
Muitas soluções são contempladas sem, entretanto, citar os problemas geradores. Posições são consideradas que há muito foram esquecidas como triviais. Críticas gritaram no silêncio de não poucas conveniências.
Não são seguidos padrões convencionais de exposição e os temas envolvidos se repetem esparsos em ciclos de insistência intencionais para permitir interferências no pensamento em desenvolvimento que se julgam devam obrigar relacionamentos constantes para o confronto entre posições assumidas (ou aventadas).
Não são disponibilizados um esclarecimento panorâmico e uma articulação de idéias que permitam ao leitor vislumbrar algum caminho seguro a seguir após a leitura da obra. Mas, é pretendida uma maior liberdade de movimentos nos possíveis campos do questionar por aqueles que se sintam provocados, de alguma forma ou por determinado motivo, a modificar posturas vivenciais.
Provocação. Provocação para acender. Gerar pensamentos. Ligar reflexões. Desfazer embotamentos. Sentir necessidades. Ultrapassar parcialidades para perceber o essencial da dignidade. Tecer relações entre as contradições para permitir conjeturar horizontes. Estes seriam objetivos estimados, desejavelmente tangíveis, com os quais os aforismos presentes nesta obra estariam relacionados.
Embora as provocações transitem em distintos níveis e em direções sempre avolumadas ou imprecisas, são propositadas razões causais para alvitrar, em dada medida, mais intensamente nas entrelinhas que explicitamente, reflexões sobre o essencial de um mundo mais humano que persiga a dignidade e a harmonia.
São, então, provocadas, no conjunto da obra, reflexões que venham constituir respostas ao desconhecimento das faculdades que promovam elucidação de valores e compreensão necessária em um mundo tão insensato e em uma realidade tão brutalmente cruel que se distingue por não transcender para a dignidade.
Contestação dos fatos seria, eventualmente, a primeira consequência da impossibilidade de se constituir decifrações para melhor entender o mundo que impõe limites desumanos aos humanos que anseiam respeito e dignidade. Mas, é urgente pensar um mundo mais humano
para os humanos.
A apresentação dos aforismos não segue, como precedentemente afirmado, qualquer ordem sistematizada ou, pelo menos, não se confessa, de forma direta ou imperativa, justificativa para a ordem considerada que se impôs adotar. Aponha-se, entretanto, que os Aforismos são apresentados em classes adjetivadas (predicadas) como: Aforismos Contingentes, Aforismos Incontidos, Aforismos Causais, Aforismos Moderados, Aforismos Projetados, Aforismos Dependentes, Aforismos Necessários e Aforismos Jamais Suficientes.
A lógica, ou a filosofia subjacente, ou as razões condicionais, da correspondente classificação e a relação necessária entre as classes consideradas de apotegmas serão discutidas (ou tornadas reveladas) em obra a ser lançada na sequência.
Neste trabalho fica instituído, porém, a partir dos silogismos listados, a fundamentação da Lógica da Necessidade (ou antes, de uma Filosofia da Necessidade).
Que as máximas relacionadas nesta obra possam conduzir a uma aventura no campo dos benefícios de um crescimento antropológico e filosófico que obrigue o bem e a valorização do homem, independentemente de algum outro propósito.
Carlos Magno Corrêa Dias
Autor de PARADIGMAS DA NECESSIDADE
Curitiba-PR, 15/09/2012
9 de setembro de 2012
Simbiose entre Silogística e Lógica Categórica Tem Continuidade.
“Silogística: introdução à Lógica Categórica” é título de duas edições (já esgotadas) de obra publicada anos passados e que se relaciona com diversos aspectos do Cálculo dos Predicados em Lógica Matemática de Primeira Ordem mantendo, entretanto, relações de impregnação entre a Silogística e a Lógica Categórica.
As diversas solicitações de exemplares das edições anteriores motivaram os trabalhos para que fosse engendrada uma nova edição da obra em referência. Assim, na iminência de se publicar uma terceira edição de “Silogística: introdução à Lógica Categórica”, inicia-se, a partir deste arrazoado, a apresentação de algumas considerações particulares sobre os objetivos e conteúdos das edições anteriores da obra em referência que permitam perspectivar as razões segundo as quais se adotará a correspondente estrutura na próxima edição.
Assim sendo, observe-se que na primeira edição de “Silogística: introdução à Lógica Categórica” é apresentada uma exposição concisa sobre a Silogística, bem como, sobre alguns dos elementos a ela associados; dado que se julgar interessante apresentar a Lógica dos Silogismos a todo aquele que pretende uma introdução no estudo da Lógica Formal associada ao Cálculo dos Predicados.
Todavia, é lícito observar que, em decorrência das múltiplas implicações que envolvem os raciocínios silogísticos, o leitor não encontrará naquele trabalho extensas considerações relacionadas com a correspondente teoria, senão uma visão panorâmica da mesma acrescida, porém, de algumas ponderações particulares que possam constituir conjunto básico para aqueles iniciantes que, por motivos os mais diversos, se obrigam a estudar a Lógica Matemática.
Os limites impostos à primeira edição da obra obrigaram apresentar o respectivo conteúdo de maneira que tanto a leitura resultasse menos árdua como a compreensão fosse facilitada. Assim, aponha-se que o leitor, seja ele estudante ou professor, ou mesmo leigo, verificará que não se pressupõe um nível de conhecimento prévio em Lógica Matemática. O material poderá ser visto, com proveito, por todo aquele leitor que deseje se iniciar na Silogística de Aristóteles, sem, contudo, pretender uma especialização neste campo.
No que diz respeito à linguagem empregada na correspondente exposição do assunto, procurou-se, na medida do possível, utilizar a mais clara possível para não dificultar a compreensão das ideias com desnecessários tecnicismos. Contudo, estes últimos somente foram introduzidos quando assim o requeria a matéria abordada.
Conquanto toda Ciência tenda, em seu próprio desenvolvimento, a incluir um número cada vez maior de idéias de progressiva complexidade - não estando a Lógica Matemática imune a tal tendência, foi pretendida uma apresentação que não fugisse à compreensão da maioria. É claro, que em determinados pontos, entretanto, se fará necessária uma maior reflexão por parte do leitor. Porém, para a compreensão do conteúdo da primeira edição do livro não se requer conhecimento prévio especial de Lógica nem tão pouco uma preparação matemática de nível superior.
A despeito, porém, das considerações precedentes, deve-se observar que, para efeito da exposição sobre o desenvolvimento do tema do livro em observação, optou-se por adotar uma subdivisão em dez capítulos.
Neste sentido, então, de forma geral e compendiada, leva-se em conta, no Capítulo I (Prolegômenos às Origens da Lógica), um relato condensado sobre a história das origens da Lógica Matemática. Saliente-se, a propósito, que as correspondentes ponderações não partem de qualquer ponto de vista assumido. Apenas buscou-se descrever, o mais objetivamente possível, alguns fatos sobre os primórdios da referida história. Procurou-se, também e entretanto, relegar a um segundo plano e, ao máximo, quaisquer simpatias ou antipatias pessoais.
Aponha-se, no entanto, que a Lógica Matemática tanto quanto a Matemática constituem uma aventura no mundo das ideias e a história destas duas Ciências revela, por sua vez, os pensamentos mais fantásticos de inúmeras gerações. Embora seu estudo envolva não poucas dificuldades, é, todavia, deveras esclarecedor.
Concluída a exposição pretendida no primeiro capítulo, onde se esboça o desenvolvimento de algumas ideias principais e se minimizam as referências a outros tantos desenvolvimentos, apresentam-se, no Capítulo II e no Capítulo III considerações gerais sobre a Matemática e a Lógica, respectivamente, em Platão e em Aristóteles.
Já no Capítulo IV (Preliminares sobre Argumentos) apresentam-se algumas ponderações, muito particulares, a respeito de argumentos dedutivos e inferências.
Em seguida, no Capítulo V (Proposições ou Enunciados Categóricos) são definidas as proposições categóricas, procurando distinguí-las dos demais tipos de proposições. Evidenciam-se, então, as denominadas formas típicas de proposições categóricas, classificando-as segundo a quantidade e a qualidade.
Como os enunciados categóricos são asserções sobre conjuntos e de relações entre conjuntos, os termos sujeito e predicado são considerados como conjuntos. Mas, na época de Aristóteles conjuntos eram tomados como coleções de coisas com as mesmas características; não se aventando a possibilidade da existência de conjuntos vazios. Contudo, deve-se levar em conta a possibilidade de alguns de tais conjuntos serem vazios. Assim, ainda no capítulo anterior, faz-se a distinção entre o que se arbitrou chamar de interpretação existencial e interpretação hipotética.
Também, no Capítulo V, apresentam-se observações sobre os termos contraditórios, contrários, subcontrários e subalternos, bem como, sobre as correspondentes relações entre os mesmos. Ou seja, faz-se uma exposição sobre o chamado quadro de oposições de Aristóteles, evidenciando-se as diferenças existentes entre a qualidade e a quantidade (ou ambas) das proposições categóricas.
Como é possível representar as proposições categóricas através dos diagramas de Venn, no Capítulo VI (Diagramas de Venn e Enunciados Categóricos) assentam-se considerações sobre como proceder para efetivar a representação das proposições em questão através dos mencionados diagramas. Levam-se em conta, também, algumas considerações sobre a interpretação booleana dos enunciados categóricos de forma típica.
De forma assaz simplificada, são apresentadas no Capítulo VII (Cálculo dos Predicados e Proposições Categóricas) considerações gerais sobre o Cálculo dos Predicados em Lógica Matemática. Além do que, também, de forma compendiada, evidencia-se a maneira pela qual é possível traduzir a Lógica dos Enunciados Categóricos em uma Teoria de Primeira Ordem. Em tal capítulo definem-se funções proposicionais e conjuntos-verdade de funções proposicionais; bem como, apresentam-se observações a respeito das operações lógicas sobre tais funções.
Ainda, no Capítulo VII, aborda-se a Teoria da Quantificação, onde são definidos os quantificadores universal e existencial e apresentadas observações relacionadas aos mesmos.
No Capítulo VIII (Regras de Inferência), faz-se uma exposição bastante geral sobre os denominados argumentos dedutivos. Inicia-se o capítulo revendo uma série de considerações sobre a validade e os critérios de verificação de validade de argumentos que têm sua existência no cálculo proposicional. Após uma tal exposição, complementam-se as regras de inferência do cálculo proposicional apresentando-se as principais regras de inferência que possibilitam analisar argumentos constituídos de enunciados quantificados; isto é, de argumentos próprios do cálculo dos predicados.
No Capítulo IX (Silogismos), faz-se uma caracterização geral dos silogismos e evidenciam-se aqueles silogismos tomados como válidos. Neste mesmo capítulo é considerada, ainda, a forma pela qual é possível utilizar os diagramas de Venn para se mostrar a validade de um silogismo.
A exposição teórica do livro é concluída com a apresentação do Capítulo X (Silogismos como Teoria Axiomática). Neste capítulo são apresentadas algumas observações resumidas sobre determinados sistemas axiomáticos utilizados para a avaliação da legitimidade de silogismos, demonstrando-se a legitimidade de vários silogismos mediante a adoção de certos axiomas e regras.
Acrescente-se, entretanto, que ao final dos Capítulos V ao X é dada uma coleção de exercícios que correspondem aos respectivos temas tratados em cada um de tais capítulos, sendo mais ou menos distribuídos em três categorias. Existem questões destinadas à simples fixação de conceitos. Seguem-se exercícios relativamente fáceis, que exigem provas de alguns teoremas mencionados nos correspondentes capítulos ou sua aplicação a determinadas situações. E, alguns exercícios que ou são mais difíceis ou exigem alguma reflexão prévia por parte do leitor.
Quanto aos exercícios cabe salientar que na segunda edição da obra estes passarão a constituir um capítulo particular onde os mesmos serão tratados em conjunto seguindo a ordem de apresentação dos temas abordados.
A segunda edição do livro em referência sofrerá algumas modificações estruturais uma vez que o número de capítulos será ampliado e passar-se-á a considerar aspectos axiomáticos dos Cálculos Lógicos dentre outras considerações. Mas, sobre a segunda edição de “Silogística: introdução à Lógica Categórica” um outro arrazoado será considerado.
Carlos Magno Corrêa Dias
Autor de “Silogística: introdução à Lógica Categórica”
Curitiba-PR, 09/09/2012
18 de agosto de 2012
Os Caminhos da Inovação em Engenharia Matemática.
Em diversas áreas do saber a Inovação tem permeado de forma a possibilitar uma nova ou renovada relação entre a Ciência e a Tecnologia. No campo da Matemática não é diferente, embora alguns velhos paradigmas se mantenham reproduzidos insistentemente sem uma possibilidade de mudança, infelizmente.
É urgente, porém, favorecer discussões mais contundentes sobre questões científicas e tecnológicas relacionadas com a Matemática quando se obriga a solução de problemas do mundo real na atualidade. Uma de tais possibilitadas consiste na proposição de novas formas de Engenharia como a denominada Engenharia Matemática. Ressalte-se, de imediato, entretanto, que não faço referência àquilo que usualmente se arbitra chamar de Matemática Aplicada. Engenharia Matemática não é Matemática Aplicada na concepção aqui adotada. No sentido pretendido, Matemática é um atributo do substantivo Engenharia.
Contudo, aponha-se, em particular, também, que defendo uma Engenharia Matemática centrada na relação intrínseca entre Inovação, Lógica, Modelação, Ergonomia e Usabilidade para a produção de máquinas, equipamentos, processos, ferramentas, serviços, procedimentos, tecnologias ou dispositivos que garantam o bem estar humano e o correspondente desempenho ergonômico eficiente e usabilidade eficaz dos sistemas envolvidos.
Minha proposta de Engenharia Matemática está centrada na visão que o processo de engendrar deve associar, tanto na concepção quanto na produção, necessariamente, as características psicofisiológicas do prestador do serviço, do usuário do bem e da mercadoria produzida para garantir Inovação, mas condicionado ao bem estar humano; seja no âmbito da renovação ou da invenção.
Tenho salientado, em específico, que a modelação e a modelagem (que devem ser tratadas em distinção estrita) podem promover a ampliação da Ergonomia e da Usabilidade, a partir do engendrar de tecnologias e da disseminação de ferramentas tecnológicas produzidas tanto no Meio Produtivo (fortemente ligado à Tecnologia) quanto pensadas na Academia (fortemente ligada à Ciência).
Defendo, entretanto, uma Engenharia Matemática associada à Ergonomia, mas vigiada pela Inovação, que permita não somente gerar simples soluções, como é usual no campo da Matemática Aplicada tradicional, mas que tenha por diferencial, de um lado, instituir e manter valor ergonômico agregado aos resultados e, de outro, que possa contribuir efetivamente na Usabilidade dos bens e produtos engendrados para a melhoria dos padrões de vida da população. Penso que simples modelos matemáticos, que não levem em conta, necessariamente, os distintos tipos de Ergonomia (principalmente a Cognitiva, ou Lógica), não têm muito sentido nos dias atuais.
Quanto à Ergonomia Cognitiva, a qual objetiva os processos mentais (tais como: percepção, atenção, cognição, lógica, entendimento, inferência, armazenamento e recuperação de memória) e como eles afetam as interações entre os seres humanos e os demais elementos de um sistema, tenho estruturado as bases de uma outra forma de Engenharia associada, a Engenharia Inferencial, sobre a qual observações já foram apresentadas em oportunidades anteriores; mas, que se concentra na Análise Inferencial e na Teoria Lógica da Prova.
Um conceito particular de Engenharia Matemática a ser desenvolvida no meio produtivo para o beneficio das pessoas é o que tenho perseguido. Enquanto Fator de Inovação esta Engenharia Matemática permitirá a instituição da modelação de processos e produtos centrados em soluções lógico-formais para a otimização e ampliação de resultados no meio de produção visando, em primeira instância, a qualidade de vida das populações.
A concepção de Engenharia Matemática aqui considerada não é aquela baseada em algum entendimento acadêmico daquilo que se costuma chamar Matemática Aplicada ou de quaisquer outras interpretações associadas que objetivem usar limitantes conhecimentos da Matemática ou técnicas matemáticas isoladas como se as mesmas fossem algum tipo de solução. Não há aplicação da Matemática no equacionar ou solucionar problemas do mundo real sem que haja uma forte interação com as Engenharias, a Ergonomia e a Usabilidade. Entende-se que usar (ou aplicar) a Matemática não é engendrar soluções com o auxílio da Matemática.
Defendo que a Engenharia Matemática deva estabelecer interface efetiva (real) com as Tecnologias e instituir Ciência que invariavelmente tenha como foco soluções com rapidez e eficácia para não apenas garantir valor de mercado, mas, também, e principalmente, gerar conhecimento e produtos necessários para o bem estar geral das pessoas e, neste sentido, não há como atender tal requisito sem que exista um forte relacionamento entre os diversos saberes e sem levar em conta uma Lógica subjacente.
Carlos Magno Corrêa Dias
Curitiba-PR, 18/09/2012
14 de agosto de 2012
Filosofia, História e Analítica em Relações Compendiadas.
Mantendo-se as características da primeira edição, a segunda edição de COMPÊNDIOS DE MATEMÁTICA E LÓGICA MATEMÁTICA: UMA ABORDAGEM EXTEMPORÂNEA é composta de um conjunto de textos que abordam tanto temas estritamente técnicos quanto tópicos relacionados com aspectos históricos e filosóficos centrados, de um lado, na Matemática e, de outro, na Lógica Matemática.
O livro, embora contenha uma discussão sistematizada sobre determinados tópicos, não pretende ser uma compreensão, mas, antes, uma impressão sobre tais assuntos. Porém, os temas tratados no desenvolver do livro não são apresentados de forma a seguir uma sequência rígida de exposição ou de encadeamento, mesmo porque, não se desenvolvendo na obra um único tema, alguns dos assuntos abordados não encontram relação alguma com os demais tópicos.
A exposição levada a cabo, como o título da obra estabelece, constitui uma apresentação de tópicos compendiados sobre Matemática e Lógica Matemática desenvolvidos sem quaisquer preocupações com o que é próprio do tempo em que sucede ou se faz. São, em verdade, prolegômenos a respeito de certas particularidades sobre a Matemática e a Lógica Matemática, desenvolvidos de forma extemporânea.
Embora, em certo sentido, não sejam consideradas sequências estritas de apresentação dos textos que compõem este livro, observe-se que a maioria dos mesmos podem ser lidos independentemente uns dos outros sem, contudo, comprometer a devida compreensão de cada uma de suas partes.
Assim, apresenta-se tanto uma exposição sobre a evolução histórica da Lógica Matemática quanto sobre as principais concepções filosóficas a respeito da Matemática; embora questões relacionadas com os fundamentos da Matemática encontrem-se, em maior ou menor grau, disseminados ao longo dos vários capítulos de que é composta a obra.
São consideradas observações sobre antinomias e paradoxos sejam semânticos ou lógicos, e, são analisados pontos associados à relação de dominação entre conjuntos, à relação de equipotência entre conjuntos, bem como, aos teoremas de Cantor e de Schröder-Bernstein.
Apresenta-se, resumidamente, o Cálculo Sentencial (ou Proposicional) em Lógica Matemática, levando-se em conta, particularmente, algumas das técnicas formais de avaliação de argumentos dedutivos válidos relacionados com a Teoria da Argumentação e a Análise Inferencial Proposicional.
Ainda no campo da dedução, faz-se uma introdução à Silogística de Aristóteles onde apresenta-se a Lógica dos Enunciados Categóricos associada à Lógica de Primeira Ordem.
No campo do ensino-aprendizagem da Matemática são expostas considerações sobre as linhas gerais de uma correspondente proposta metodológica em matemática.
No que diz respeito à Matemática de Comutação, abordam-se questões relacionadas com a Álgebra Booleana e com a Lógica Digital; e, quanto à Teoria dos Números, apresenta-se uma introdução aos sistemas de numeração.
Corresponde, pois, a obra a uma abordagem extemporânea sobre assuntos distintos relacionados com a Matemática e a Lógica Matemática desenvolvidos de forma compendiada. O trabalho, porém, não é, segundo padrões convencionados, um livro de Matemática ou de Lógica, dado que não desenvolve um único tema de forma específica. Objetivou-se, ao contrário, apresentar, em relação aos tópicos tratados, determinadas ponderações críticas que poderão, por sua vez, motivar o leitor tanto a desenvolver algumas reflexões pertinentes, quanto a balizar seu caminho no sentido de buscar aprofundamentos que julgue necessário ao desenvolvimento de seus respectivos estudos e pesquisas no campo em questão.
Seguindo a ideia (ou a lógica) do livro em referência, informe-se, entretanto, que é pretendido lançar, em breve, uma nova edição da obra ou outro livro que siga de forma semelhante a estruturação das edições anteriores dos COMPÊNDIOS DE MATEMÁTICA E LÓGICA MATEMÁTICA: UMA ABORDAGEM EXTEMPORÂNEA.
Carlos Magno Corrêa Dias
Autor de COMPÊNDIOS DE MATEMÁTICA E LÓGICA MATEMÁTICA: UMA ABORDAGEM EXTEMPORÂNEA
ongma@ig.com.br
Curitiba-PR, 14/08/2012
2 de agosto de 2012
Lógica Matemática Predicativa e Quantificacional Além da Trivialidade.
Objetivando certificar os participantes no campo da Álgebra das Funções Predicativas e das Funções Quantificadas desenvolvidas no Cálculo Predicativo em Lógica Formal de Primeira Ordem para a Enunciação, Análise e Resolução Lógica de Problemas de Raciocínio ministrei, no final do segundo semestre de 2011, o Curso intitulado LÓGICA MATEMÁTICA PREDICATIVA E QUANTIFICACIONAL DE PRIMEIRA ORDEM, em um total de vinte horas, em Curitiba-PR, tendo por ouvintes alunos regularmente matriculados em Cursos de Engenharia.
O Curso de extensão Universitária em referência complementou os estudos desenvolvidos no mês de setembro de 2011 quando, também, apresentei o Curso de Extensão Universitária intitulado a LÓGICA MATEMÁTICA PROPOSICIONAL DE PRIMEIRA ORDEM, o qual, por sua vez, objetivou apresentar a Linguagem e a Álgebra Proposicional do Cálculo Enunciativo em Lógica Matemática de Primeira Ordem para a Avaliação e Correção de Raciocínios Lógicos Dedutivos formalizados segundo Argumentos e Inferências Dedutivas que estariam além de um notória trivialidade e obrigam estruturação diferenciada.
Os dois cursos referenciados foram desenvolvidos especialmente para alunos dos Cursos Regulares de Engenharia e conduzidos no sentido de apresentar os pressupostos necessários para o desenvolvimento de habilidades nos campos da Teoria da Demonstração Dedutiva e da Teoria da Prova relacionados a Sistemas Algébricos Dicotômicos e Bivalentes.
Como tenho considerado, Introduzir, com desejável rigor e grau de aprofundamento, particulares técnicas dedutivas de cálculo para a avaliação formal de raciocínios passíveis de estruturação como argumentos dedutivos foi, também, outro dos objetivos dos cursos em referência.
Dada a grande procura pelos cursos ofertados, é intencionado ofertar na seqüência, nos próximos semestres letivos novos cursos semelhantes e com um número maior de vagas para os interessados.
Para o futuro Engenheiro é importante desenvolver habilidades no sentido de ser possível a tomada de decisões sobre problemas de raciocínio de forma analítica sem que os mesmos sejam comprometidos pela materialidade ou condicionamentos do mundo real. E em tal sentido, é que defendo a posição que as técnicas formais de investigação da validade de modelos formalizados com os recursos operacionais da Lógica Formal são fontes de soluções das mais amplas e eficientes.
Carlos Magno Corrêa Dias
Curitiba-PR, 02/08/2012
23 de julho de 2012
Lógica Matemática Tem Nova Edição Publicada no Paraná.
A Lógica Matemática vem
sendo aplicada em praticamente todos os campos do conhecimento humano e, devido
a esta intensidade, tem exigido que seu correspondente estudo e necessária
difusão sejam considerados nos diversos campos científicos ou tecnológicos onde
o raciocínio lógico (bivalente e dicotômico) se faça presente. Apresentar o
Cálculo Proposicional em Lógica Matemática para a avaliação e correção de
raciocínios lógicos dedutivos é um dos principais objetivos da terceira edição
da obra intitulada Lógica matemática: introdução ao cálculo proposicional, de
minha autoria, editada e publicada em 2011, em Curitiba-PR.
O livro constitui uma
introdução (compendiada) à Lógica Matemática especificamente relacionada com as
Operações e Relações da Álgebra Proposicional e é dirigida (em particular) para
os leitores de cursos universitários das Ciências Exatas e de Tecnologia.
Contudo, pode servir de texto de iniciação à Lógica Matemática em quaisquer
outros cursos na Universidade (em especial no curso de Filosofia). A leitura
seria, também, indicada para todo aquele, universitário ou não, que esteja
interessado em ter uma introdução neste campo do conhecimento. Com a devida
adequação e correspondente cuidado poderia, ainda, ser utilizada, com proveito,
nos anos finais dos cursos de Ensino Médio (conforme bem a experiência já demonstrou).
Apresentar os conteúdos
necessários da forma o mais simples possível constituiu propósito fundamental
da obra, uma vez que este livro é produto, também, de uma vivência de ensino a
partir da qual se detectou algumas dificuldades basilares com as quais se
defrontam muitos dos educandos que se relacionam pela primeira vez com a Lógica
Matemática.
Foi procurado facilitar toda
classe de considerações no desenvolvimento dos temas atinentes e na escolha dos
exemplos apresentados. Com a intenção de auxiliar o leitor que não tenha uma
sólida base matemática nem tão pouco disponha de um professor que o oriente, o
estilo do discurso adotado foi, intencionalmente, o informal. Contudo,
ressalte-se, que o assunto foi conduzido com suficiente grau de precisão com
vistas a atender aqueles que pretendam seguir estudos mais aprofundados em
Lógica Matemática. Acrescente-se, todavia, que em determinadas partes da obra alguns
problemas foram tratados com grau de dificuldade um pouco maior que na maioria
dos livros similares existentes.
O conteúdo selecionado
julga-se adequado para um primeiro contato com os elementos da Lógica
Matemática quanto referenciados ao Cálculo Proposicional. A linguagem
empregada, tanto quanto o tratamento dispensado a determinados assuntos e
problemas, bem como, a maneira pela qual procurou-se articular cada um dos correspondentes
capítulos evidenciam o caráter de iniciação que orienta o desenvolvimento do
assunto tratado.
Desta forma, o livro
procurou introduzir, com desejável rigor e grau de aprofundamento, algumas das
técnicas dedutivas do Cálculo Sentencial, partindo-se do estudo das proposições
e dos elementos que sistematizam o raciocínio dedutivo comum em Matemática. São
introduzidas, informalmente, por um lado, considerações sobre formalização,
validade, interpretação, conseqüência, e, por outro, são precisadas e desenvolvidas
considerações sobre notações, simbolismo lógico e não lógico, semântica e
sintaxe da linguagem lógica.
Ao que concerne, entretanto
à ordenação das matérias, cabe observar, em específico, que o livro foi
estruturado em nove capítulos, sendo que no Capítulo
I (Escorço Histórico da Lógica
Matemática) faz-se um breve relato da história da Lógica Matemática,
partindo-se de Aristóteles até os dias atuais. São mencionados, resumidamente,
autores e principais descobertas que, ao passar dos tempos, conduziram a reconhecer
a Lógica Matemática como uma Ciência própria e com notável independência.
Do Capítulo II ao VI encontram-se
apresentados os elementos indispensáveis para que se possa obter uma idéia
preliminar do que venha ser tratado em Lógica Matemática Proposicional,
constituindo, portanto, o núcleo desta obra.
Assim, no Capítulo II (Estruturação do Cálculo Proposicional) são levadas em consideração
os conceitos fundamentais sobre a linguagem artificial da Lógica Sentencial,
sobre Proposições, Conectivos Lógicos, Verdade e Validade, Fórmulas Proposicionais,
Valores Lógicos, Operações Lógicas Fundamentais, Escopo e Pareação de Fórmulas
Proposicionais; enfim, sobre os elementos necessários para se trabalhar a
correspondente teoria.
No Capítulo III (Método das
Tabelas-Verdade) efetua-se um estudo das Tabelas-Verdade, levando-se em
conta os correspondentes métodos de implementação. São, também, consideradas as
definições de Tautologias, Contradições e Contingências, as quais serão
aplicadas ao exame das Relações Lógicas e dos Argumentos Dedutivos e
Inferências.
No Capítulo IV (Relações Lógicas
no Cálculo Proposicional) estão reunidos as definições de Relações de
Equivalência e de Implicação Lógica, principais propriedades das Relações
Lógicas e Teoremas Fundamentais (da Equivalência, da Implicação, da
Substituição), bem como, considerações sobre as Operações Derivadas de Negação
Conjunta e Negação Disjunta e suas relações com as Operações Lógicas Fundamentais.
No Capítulo V (Álgebra
Proposicional) é dado um “tratamento algébrico” às Operações Lógicas onde
são evidenciadas várias das propriedades das mesmas, são apresentados critérios
de Simplificação de Fórmulas Proposicionais, sendo levado em conta critérios
para a Redução do Número de Operadores. Também são analisadas as Formas Normais
de uma Fórmula Proposicional e são discutidos o Princípio da Dualidade e o
Problema de Post.
No Capítulo VI (Dedução no Cálculo
Proposicional) são amplamente discutidas as técnicas dedutivas e se
apresenta, de modo o mais rigoroso para o principiante, a noção de “dedução”.
São estudados os Argumentos Válidos Fundamentais, as Regras de Inferência, os
Critérios de Verificação da Validade de Argumentos Dedutivos, bem como alguns
aspectos importantes das correspondentes demonstrações e suas implicações.
Já os Capítulos VII, VIII e IX constituem capítulos complementares
no sentido de motivar o leitor a prosseguir em estudos ulteriores. Em
particular, no Capítulo VII (Sistemas Axiomáticos em Lógica Sentencial)
são apresentadas considerações introdutórias sobre a concepção de Teoria Formal,
Linguagem Formal e Teoria Axiomática em Lógica Sentencial. Apresentam-se,
também, alguns Sistemas Axiomáticos desenvolvidos para o Cálculo Sentencial.
No Capítulo VIII (Paradoxos e
Antinomias) são levadas em consideração observações sobre a importância do
estudo dos Paradoxos e Antinomias no desenvolvimento tanto da Lógica quanto da
Matemática; sendo examinados, particularmente, alguns dos Paradoxos e
Antinomias, tanto lógicos quanto matemáticos, que mais influências exerceram.
Como última parte do livro
tem-se o Capítulo VIII (Álgebra Booleana). Neste capítulo
abordam-se tópicos sobre Álgebra de Boole, Matemática de Comutação, Redes Elétricas
e Portas Lógicas. Tais conteúdos são abordados levando-se em conta a Lógica
Proposicional como teoria subjacente, podendo ser tomados como exemplos aplicativos
daquela teoria.
Na
presente edição, os exercícios relacionados aos temas tratados são apresentados
logo ao término de cada capítulo; excetuando-se, entretanto, o primeiro capítulo,
pois no mesmo não é considerada uma lista de exercícios. Quanto aos exercícios
cabe salientar, ainda, que ou são apresentadas as respectivas respostas ou são
consideradas as correspondentes soluções acrescidas de considerações
pertinentes.
Ressalte-se, por fim, que,
embora a obra trate dos principais elementos no domínio das técnicas dedutivas,
é necessário ponderar que o livro não constitui uma obra “definitiva” no
sentido estrito da palavra. Trata-se, em essência, de um ensaio compendiado
centrado na premissa maior de apresentar a amálgama dos principais elementos
que constituem a denominada Lógica Matemática no campo do Cálculo Proposicional.
Espera-se, entretanto, que o presente livro seja de serventia para todo aquele
que se inicia no mundo das ciências dedutivas servindo-se do estudo da Lógica Matemática
Sentencial.
Carlos
Magno Corrêa Dias
Curitibha-PR, 23/07/2012
6 de julho de 2012
Obra Sobre Lógica Matemática Gera Novo Registro de Propriedade Intelectual.
Em 12 de julho de 2012 recebi mais um Registro de Propriedade Intelectual emitido pelo Escritório de Direitos Autorais (EDA) da Biblioteca
Nacional (BN), Ministério da Cultura, referente à terceira edição do livro de minha
autoria intitulado LÓGICA MATEMÁTICA: INTRODUÇÃO AO CÁLCULO PROPOSICIONAL,
que editei e publiquei no ano de 2011. A obra, com 530 (quinhentas
e trinta) páginas e dividida em nove capítulos, trata da Álgebra Proposicional
necessária para o estudo da Teoria da Argumentação Dedutiva em Lógica Formal de
Primeira Ordem.
Este livro aborda, com desejável rigor e grau de
abrangência, sem, contudo, restringir-se a aprofundamentos técnicos exacerbados,
procedimentos formais necessários para identificar raciocínios dedutivos
válidos, bem como, para a correção de falácias ou sofismas (os chamados
raciocínios não válidos). Na obra são apresentadas considerações sobre a
Álgebra da Lógica Proposicional, a Análise Inferencial e a Teoria da
Argumentação Lógica. Acrescento que um estudo particular sobre Paradoxos e Antinomias é,
também, levado em consideração na obra em referência.
Nos últimos dois capítulos do livro são
apresentadas, em particular, observações gerais sobre escolhidos Sistemas
Axiomáticos em Lógica Matemática, bem como, ponderações sobre Álgebra Booleana,
Matemática de Comutação e Lógica Digital; sendo os últimos assuntos tratados
como exemplos aplicativos da Lógica Matemática Proposicional.
Carlos Magno Corrêa Dias
Curitiba-PR, 06/07/2012
1 de julho de 2012
Do Lógico ao Semiótico e de Volta ao Filosófico.
Como tenho observado, por seguidas vezes, o vocábulo PATERBLINK constitui uma variação (inapropriada) do termo PATHERBLINCK que criei anos atrás para denominar uma forma particular de Estrutura Lógica Bivalente (Completa e Correta), a qual está associada à “Lógica Forte dos Neologismos Semióticos”, também, de minha criação. Inapropriado aqui utilizado no sentido lato e contrário ao termo “apropriado” de apropriação; mas não, estritamente, como, simplesmente, “indevido”.
É, porém, natural, que, com o passar do tempo, variações redigidas de PATHERBLINCK surjam a partir da pronúncia do termo em referência no mundo físico, sem que o arcano se revele. Todavia, ao se manter não revelado, naturalmente, se obriga habitar outros mundos possíveis; como é o caso de passar a ser considerado, por exemplo, em sítios da World Wide Web ou no recôndito das mentes que alvitram os correspondentes entendimentos materiais do termo em referência.
Algo semelhante ocorre, entretanto, e necessariamente, com o termo associado ONGMA (o qual, em muitas das vezes, passa desapercebido; embora seja fundamental e não dissociado do primeiro). ONGMA é outro dos neologismos que criei para instituir a Álgebra Consistente que possibilita equacionar argumentações válidas ou falaciosas no mundo PATHERBLINCK. Assim, ONGMA e PATHERBLINCK habitam, em simbiose, um mesmo mundo possível cujo conhecimento é essencial para a abertura das portas da Lógica por eles condicionada e que transcendem as usuais formas conhecidas de se raciocinar.
Não é possível, acrescente-se, de imediato, apreender o significado destes termos sem se considerar a dualidade de segunda ordem existente entre os mesmos, a qual, por sua vez, remete, necessária, mas não suficientemente, a um sentido ontológico que proclama uma determinada comunhão ou interseção semiótica entre os dois entes, mas que, dialeticamente, não permite que qualquer dentre eles seja subconjunto lógico do outro, ainda que na identidade aventada semelhante conhecimento filosófico seja auferido para transcender os correspondentes significados.
Assim sendo, a questão em consideração encontra-se muito distante (e além) de axiomas triviais que condicionam teorias notoriamente conhecidas, ultrapassando, também, o alcance limitante (mas não de todo limitado) da bivalência e dicotomia.
Sobre a “Lógica Forte dos Neologismos Semióticos”, na qual transitam, natural e formalmente, os termos ONGMA e PATHERBLINCK, caberão, em futuro próximo, as necessárias observações. Contudo, neste tempo, ficam apenas as considerações anteriormente aventadas que promulgam, intencionalmente, é claro, a manutenção do suposto enigma.
Carlos Magno Corrêa Dias
Curitiba-PR, 01/07/2012
30 de junho de 2012
MITOS Afastam os Homens das CIÊNCIAS, das ARTES e da FÉ.
Considerações sem fundamento
objetivo ou científico que dão origem a histórias em universos puramente
maravilhosos constituem apenas narrativas de caráter simbólico instituídas para
manter a proliferação de recorrentes e desejadas crenças.
Estas últimas, por sua vez, devido à especificidade
fantasiosa, procuram interpretar ou entender a existência de uma dada cultura desenvolvida ou de um
determinado valor instaurado, de forma assaz particular e estrita, fazendo
forte apelo aos mistérios que são permitidos aceitar. Tal é o caso, por
exemplo, de se atribuir feitos extraordinários ou inumanos a seres que foram
apenas reais, normais ou, também, simplesmente, mortais.
Muitas falácias (ou, na verdade, sofismas) são
consideradas em torno de pessoas que ao longo do transcorrer do tempo assumiram
a posição de seres históricos e que por motivos dos mais variados, centrados,
em geral, em pretextos não racionais ou impelidos por quimeras incontroláveis,
ofuscam, efetivamente, a verdade; dando origem aos venerados e questionáveis
mitos.
Mas, uma separação, entre o mito e o verdadeiro, é
exigida de forma lógica pela racionalidade compulsória. Assim, antes de se
venerar os mitos que se vão surgindo, abundantemente, seria recomendável
considerar, para cada caso, o conjunto da obra e perspectivar as consequências
geradas. Ver-se-ia, então, que não haveria como sustentar aquelas mitologias
criadas pelo emocional ou pela compulsiva necessidade de identificar seres
fantásticos dentre os normais para, talvez e por outro lado, sustentar o desejo
de amenizar, psicologicamente, formas reconhecidas de não compreensão dos
resultados propostos.
Não se deve, entretanto, esquecer que os mitos
constituem necessidade humana e que tanto a manutenção dos mitos existentes
(impostos por gerações precedentes) quanto a criação de novos mitos
(solicitados pelas gerações atuais) obscurecem o juízo, condicionam ilusões
ilimitadas e afastam os homens da CIÊNCIA, das ARTES e da FÉ.
Carlos Magno Corrêa Dias
Curitiba-PR, 30/06/2012
Assinar:
Postagens (Atom)